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Abstract
A computer-aided diagnosis system is one of the crucial decision support tools under the
medical imaging scope. It has recently emerged as a powerful way to diagnose Alzheimer’s
Disease (AD) from structural magnetic resonance imaging scans. However, due to the deficit
of recognition memory in the Mild Cognitive Impairment (MCI) stage, semantic feature
ambiguity, and high inter-class visual similarities problems, computer-aided diagnosis of
AD remains challenging. To bridge these gaps, this paper proposed a hippocampus analysis
method based on a novel 3D convolutional neural network fusion strategy, called Bidi-
rectional Gated 3D Multi-scale Feature Fusion (BG-3DM2F). The suggested BG-3DM2F
framework consists of two modules: 3D Multi-Scale Chained Network (3DMS-ChaineNet)
and Bidirectional Gated Recurrent Fusion Unit (Bi-GRFU). The 3DMS-ChaineNet archi-
tecture is introduced to design the subtle features and capture the variations in hippocampal
atrophy, while the Bi-GRFU scheme is investigated to store 3DMS-ChaineNet levels in the
forward and backward fashion and retain them in the decision-making process. For valida-
tion, our solution is completely evaluated on the public Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset. Practically, we conducted empirical evaluations to verify the
effect of BG-3DM2F components. In comparison with the current state-of-the-art meth-
ods, the experiments show that our proposed approach provides efficient results, achieving
the accuracies of 98.12%, 95.26%, and 96.97% for binary classification of Normal Control
(NC) versus AD, AD versus MCI, and NC versus MCI, respectively. Therefore, we can con-
clude that our proposed BG-3DM2F system has the potential to dramatically improve the
conventional classification methods for assisting clinical decision-making.
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1 Introduction

Alzheimer’s disease is recently ranked as the most common and progressive form of
chronic neurodegenerative dementia that interferes with memory, thinking, behavior, and
other mental abilities with the hidden onset and progressive development [10, 90]. It usu-
ally starts slowly and gradually worsens over time associated with an ongoing decline of
brain functioning [17, 85, 86]. It has risen dramatically during the last few decades due
to neuroinflammation, oxidative stress, brain glucose hypometabolism, axonal and synap-
tic failures, insulin resistance, family history and lifestyle factor which are involved in the
pathogenesis and progression of AD [16, 94]. Currently, neuroimaging researchers found
that the gray matter volume in the bilateral medial temporal lobe declined notably in the
AD group compared with the normal control patients [38, 41]. Further, an in-depth analy-
sis of AD biomarkers reveals that the hippocampus contributes more significantly, which
plays a crucial role in mediating declarative memory [20, 21, 25, 75, 80]. Hippocampal vol-
ume reduction and atrophy are noticeable features for the detection of MCI and AD [88].
Accordingly, some AD research studies suggested that the deterioration of the hippocam-
pal structure, function, and biochemistry could predict the transformation of MCI to AD,
which has high relevance in the diagnosis of AD [55, 108]. Thus, the volumetric hippocam-
pal degeneration might be employed as a monitor for the progression of the disease [67].
Moreover, according to recent researches and studies, it has been reported that the Structural
Magnetic Resonance Imaging (sMRI) modality is a very powerful tool in biomedical visu-
alization and clinical research which gives complementary details in images of Alzheimer’s
disease with high resolution of anatomical structures, simple operation, and low cost that
are more informative and suitable for visual perception or computer analysis [70, 81]. A
variety of studies have been conducted for diagnosing AD or evaluating its progression by
analyzing the sMRI data [2, 8, 91]. For these reasons, the quantitative analysis of the hip-
pocampal Volumes Of Interest (VOI) using sMRI scans is of great significance in clinical to
better assimilate the inter-individual anatomical variability in the structural and functional
brain changes [2, 8, 12].

With the fast advance of technology in clinical decision making, the Computer-Aided
Diagnosis (CAD) system has received significant attention over the recent years owing to
the ever-increasing number of patients diagnosed with different diseases, which provides the
second opinion and great assistance to radiologists to improve their confidence in accept-
ing the results [6]. It has become one of the major research subjects in medical imaging
and diagnostic radiology [7]. It is noticeable that the performance of a CAD system cru-
cially depends on the feature representation and class discrimination [1]. Recently, building
a thoroughly effective feature representation map without losing significant details and use-
ful information is considered one of the key aspects in inter-class separation [72–74], and
it heavily brought significant improvement in the diagnosis of neurodegenerative diseases
[5, 15] and several medical research fields [69]. These successes of CAD system are bene-
fited from using feature fusion in Convolutional Neural Network (CNN) architectures which
is becoming the state-of-the-art method for several computer vision problems including
image classification [4], object localization [110], and image segmentation [101]. Feature
fusion solution is able of generating discriminative features from multi-level CNN to form
gradually abstract descriptors, replacing the traditional approach of a single CNN model
for feature map representation. Unfortunately, when dealing with volumetric neuroimaging
data, we notice that the computation required for Three-dimensional Convolutional Neural
Network (3D-CNN) is very complex in the volumetric domain [82]. The sparsity in the 3D
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volumetric data can still introduce many redundant weights in the network. This can abso-
lutely cause overfitting issues and lead to a huge number of parameters, in the end, [87, 100,
109]. Then, how can we alleviate such weaknesses?

In this paper, we present an empirical investigation of this question. One of the contribu-
tions of our work is to explore the application of 3D multi-scale feature fusion to evaluate
the hippocampal volume for AD recognition using the volumetric sMRI modality. In fact,
the hippocampus in mild (MCI) and severe (AD) stages is characterized by complex mor-
phological structures like shape with convex outside borders and undefined edges, margin
irregularity, and texture heterogeneity [11]. In addition, due to the high similarity of visual
characteristics of the hippocampal atrophy patterns in MCI and AD in some cases, it is dif-
ficult to find a method able to provide a satisfactory recognition performance and to face
the challenges pointed out above. To enable the feasibility of training multi-level 3D-CNN
with alleviating of the semantic feature ambiguity and high inter-class visual similarities
problems, a bidirectional sequence model [63, 105] was presented to control information
flow extracted from each level of 3D-CNN and enhance the memory ability without suf-
fering from vanishing gradient issue. This hierarchical fusion structure tends to perform
well in maximally exploiting the input data and improving classification accuracy. Despite
the popularity of 3D-CNNs and sequence models, there has only been preliminary research
on hierarchical multi-scale feature fusion networks for Alzheimer’s disease analysis [8].
Thus, the use of multi-level 3D-CNN architectures combined with sequence memories to
this issue for different computer vision techniques such as classification, detection, and seg-
mentation has yet to be fully investigated. To explore gaps in the topics of feature fusion
in 3D-CNN architectures and bidirectional sequence model, this paper makes the following
major contributions for AD recognition:

1. It introduces a new feature fusion paradigm in 3D-CNN, called BG-3DM2F, for AD
recognition which is considered as one of the most important tasks in the CAD system.
The BG-3DM2F framework provides a complementary decision tool and powerful joint
representation for hippocampal atrophy in an efficient way to classify AD against NC
(AD vs. NC) and MCI (AD vs. MCI), and NC against MCI (NC vs. MCI) with perfectly
handling the high computational cost, overfitting, vanishing gradient and high inter-
class visual similarity issues.

2. It designs an efficient 3D Multi-Scale Chained Network (3DMS-ChaineNet) architec-
ture based on merging of multiple three-dimensional feature scales in order to strongly
capture both the intrinsic and extrinsic semantic information of hippocampal volume
and, as a consequence, to formulate a robust CAD system for AD recognition.

3. It proposes a simple but effective Bidirectional Gated Recurrent Fusion Unit (Bi-
GRFU) approach to control 3DMS-ChaineNet information flow in a parallel way and
boost the memory ability of the model in a bidirectional manner. The proposed Bi-
GRFU contributes to better 3D multi-scale feature fusion, and it provides an inherent
superiority for the BG-3DM2F system to achieve better performance, especially for AD
vs. MCI classification task.

4. It presents a series of comparative experiments and an empirical evaluation analysis in
order to select the optimal network structure and verify the effectiveness of different
components of our proposed BG-3DM2F framework.

The proposed framework has been validated on the ADNI dataset [46], which is designed
for AD diagnosis and has been compared with the state-of-the-art hippocampal atrophy
classification approaches. The performance evaluation analysis shows the potential clinical
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value of the proposed BG-3DM2F framework. To the best of our knowledge, no prior work
exists on hippocampal volume characterization based on enhanced 3D multi-scale feature
fusion and bidirectional sequence model with the empirical experimental analysis that is
investigated here.

The remainder of this paper is organized as follows: In Section 2, we describe the most
important methods applied to recognize Alzheimer’s disease. In Section 3, we detail the pro-
posed approach. Then, we present the results of experiments realized on the ADNI dataset in
Section 4 and we discuss in detail the results of our proposed method in Section 5. Finally,
we conclude this paper in Section 6.

2 Related works

Over the last few years, 3D-CNN has been extensively studied in the field of computer
vision with high model performance and several interesting findings [57, 104]. In the con-
text of Alzheimer’s disease research, 3D-CNN has begun to achieve excellent machine
learning performance on pattern recognition and diagnosis tasks. Currently, it attracts signif-
icant interest from many researchers in the field, and many studies have been developed to
perform AD analysis and help radiologists give an accurate diagnosis. Inspired by the resid-
ual learning model, Karasawa et al. [49] proposed a 3D Convolutional Residual Network
with 39 layers (3D-ResNet-39) which automatically learns feature representation from MRI
images for diagnosis of AD. This method was applied to whole-brain images and evaluated
on the ADNI dataset, and the empirical analysis indicates that the proposed 3D-ResNet-39
reached promising results. Tang et al. [92] developed a unified architecture named 3D fine-
tuning convolutional neural network (3D-FCNN). The algorithm used the whole 3D MRI
blocks as input to train a 3D convolutional neural network and then finetuned model parame-
ters on the validation data. In the end, it can discriminate between diseased (AD) and healthy
(NC) brains straightly. The experiments on the ADNI dataset indicate that the proposed
3D-FCNN model is superior to conventional classifiers both in accuracy and robustness.
A Voxel-based 3D Convolutional Neural Network (V3D-CNN) was investigated in [32] to
account for all voxels in the brain and capture the subtle local brain details with better pro-
nounced global specifics of MRI images. The experiments on the ADNI dataset displayed
important performance enhancements compared to several baseline and previous studies. In
[22], a Cascaded 3D Convolutional Neural Networks (C3D-CNNs) was proposed to learn
the multi-level imaging features for classifications of AD vs. NC using Positron Emission
Tomography (PET) brain images. Conducting the experimental results and comparison on
the ADNI database demonstrate the performance improvement of the proposed method for
AD diagnosis. Yan et al. [103] suggested a 3D Residual Neural Network with 152 layers
(3D-ResNet-152) for AD classification. They applied Conditional Generative Adversarial
Networks (CGAN) to the generation of PET images from corresponding MRI images. The
authors found that their contribution (3D-ResNet-152+CGAN) improved the performance
of the network on the ADNI dataset. Inspired by independent component analysis (ICA),
Kam et al. [48] introduced a novel 3D-CNN framework that directly works on the Brain
Functional Networks (BFNs) abstracted by ICA. The proposed BFN+3D-CNN framework
can automatically and deeply learn complex, high-level, and hierarchical diagnostic fea-
tures from resting-state functional Magnetic Resonance Imaging (rs-fMRI) images. The
results on a public ADNI dataset showed the effectiveness of the proposed framework for
the early mild cognitive impairment diagnosis. To inherit the main drawbacks from the
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manual feature extraction procedure, Shmulev et al. [89] modeled a 3D Embedding Resid-
ual Neural Network (3DE-ResNet) for diagnosis of AD using brain MRI ADNI dataset.
The use of learned representation from the deep embedding allowed to increase the qual-
ity of prediction and yield significant performance. A 3D Deeply Supervised Adaptable
CNN (3D-DSA-CNN) was investigated by Hosseini et al. [39] for early diagnosis of AD.
They found that the 3D-CNN with fine-tuning reports better classification performance and
alleviates the effects of overfitting. The experiments on the ADNI MRI and CADDemen-
tia datasets without skull stripping preprocessing showed that the proposed 3D-DSA-CNN
outperforms previously proposed approaches. In this context, a similar approach based on
the Residual and Plain 3D-CNN (ResNet+P3D-CNN) architectures was adopted in [53] for
AD diagnosis to tackle with the complicated multi-stage pipelines for the hand-crafted fea-
ture extraction and conventional classification algorithms such as support vector machines
or logistic regression. The authors evaluated the performance of the proposed framework
based on the whole brain images stemming from the ADNI project that provides a dataset
of sMRI scans, and they showed that applying ResNet+P3D-CNN to the sMRI classifica-
tion problem yielded results comparable to previously used approaches. Additionally, Wang
et al. [98] exploited Ensemble of 3D Densely Connected CNN (E3DC-CNN) for diagnosis
of mild cognitive impairment and AD. E3DC-CNN can extract the most prominent features
of dementia disease and capture brain anatomical variations from whole MRI scans. The
experiments reported that the dense connections heavily drew significant improvement in
the performance of 3D networks on the ADNI dataset. Lately, Region of Interest (ROI)-
based approaches are broadly used due to the spatial dimension reduction and ability of the
whole brain representation. Cui and Liu [26] offered an ambitious suggestion to find an
apparent AD recognition solution by proposing an approach based on Deep 3D-CNN (D3D-
CNN). They argue that hippocampal atrophy is a validated neurodegeneration biomarker of
AD. Therefore, the bilateral hippocampal volume was used to train D3D-CNN, allowing the
extraction of hierarchical features for each hippocampus. The proposed method was evalu-
ated on 3D T1-weighted sMRI images extracted from the ADNI dataset, demonstrating the
promising classification performance in the accuracy of AD diagnosis. The same idea has
been explored in [27], by introducing a robust hippocampus analysis technique. To enhance
AD classification, Cui and Liu combined 3D Densely Connected Convolutional Networks
(3D-DenseNet) with Traditional Shape Features (TSF) which can capture complementary
information. This jointly learning method was trained using sMRI images from the ADNI
dataset to evaluate its performance.

Quite recently, RNN methods were incorporated with 3D-CNN to fulfill better pattern
recognition performance [77, 93, 96]. In the Alzheimer’s disease recognition context, LSTM
and GRU schemes have currently been addressed by only a few research works. In [8], a
computer-aided diagnosis system for AD was proposed. It was generated using the combi-
nation between 3D Multi-scale Feature (3DMF) blocks and Gated Recurrent Fusion Unit
(GRFU) using hippocampal volumes as input. This method was evaluated on the sMRI
ADNI dataset and the experimental analysis indicates that the proposed 3DMF+GRFU
outperforms the conventional CAD methods. In a similar study, Li and Liu [56] evalu-
ated the performance of 3D DenseNets (3D-DenseNets) to gradually learn the intensity
and shape features of internal and external hippocampal patches. Additionally, the Bidi-
rectional Gate Recurrent Unit (Bi-GRU), which is an extension of traditional Bidirectional
Recurrent Neural Networks (Bi-RNN) is also investigated to build a hybrid deep learning
model for AD diagnosis by capturing the feature similarity between the left and right hip-
pocampus. The proposed method was evaluated with the baseline MRI images extracted
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from the ADNI dataset, achieving better performance than the conventional volume and
shape analysis methods. Another study performed in the hippocampal area has been sug-
gested by Huang et al. [42]. They introduced a new framework based on 3D VGG-Variant
CNN (3DVGG-CNN) to combine complementary features from T1-weighted MRI and
Fluorodeoxyglucose Positron-Emission Tomography (FDG-PET) modalities. The proposed
method has the potential to capture the metabolic activity of the tissues, give high-resolution
information for the brain structure, and precisely evaluate anatomical metrics from MRI
and FDG-PET scans like thickness, volume, and shape. The classification of Alzheimer’s
disease was carried out on the ADNI dataset, providing satisfactory performance. To fence
this section, two recent issues similar to [56] based on the bidirectional sequence model
have been suggested for AD diagnosis in [34, 35]. The first study explored the effect of 3D-
CNN combined with Bi-RNN to obtain the deep feature representation from MRI and PET
images while the second approach is focused on the virtues of 3D-CNN and Fully Stacked
Bidirectional Long Short-Term Memory (FSBi-LSTM) architectures to capture deep fea-
ture representation from both MRI and PET modalities. The authors estimate that using a
bidirectional sequence model can provide bidirectional information that includes previous
and future contextual features to improve the predictions of the current point. These meth-
ods, 3D-CNN+Bi-RNN and 3D-CNN+FSBi-LSTM, were validated on the ADNI dataset,
demonstrating the promising classification performance.

As a matter of fact, 3D-CNN is a crucial factor to effectively explore the feature domain
and enhance performance on a visual recognition task. Irrespective of existing research stud-
ies that were previously mentioned and indicated in Table 1, the investigation of 3D-CNN
on Alzheimer’s disease research field is still relatively scarce. In addition, despite the high
achievement of 3D-CNN for AD diagnosis, it needs some improvement concerning the sys-
tematical analysis of the factors that affect the multiple feature fusion in 3D-CNN without

Table 1 Overview of the related
works focusing on 3D-CNN for
Alzheimer’s disease recognition

Literature Year Modality Method

Cheng et al. [22] 2017 PET C3D-CNNs

Korolev et al. [53] 2017 sMRI ResNet+P3D-CNN

Karasawa et al. [49] 2018 MRI 3D-ResNet-39

Tang et al. [92] 2018 MRI 3D-FCNN

Esmaeilzadeh
et al. [32]

2018 MRI V3D-CNN

Yan et al. [103] 2018 PET 3D-ResNet-152+CGAN

Kam et al. [48] 2018 rs-fMRI BFN+3D-CNN

Shmulev et al. [89] 2018 MRI 3DE-ResNet

Hosseini et al. [39] 2018 MRI 3DDSA-CNN

Cui and Liu [26] 2018 sMRI D3D-CNN

Feng et al. [34] 2018 MRI+PET 3D-CNN+Bi-RNN

Wang et al. [98] 2019 MRI E3DC-CNN

Li and Liu [56] 2019 MRI 3D-DenseNets+Bi-GRU

Huang et al. [42] 2019 MRI+FDG-
PET

3DVGG-CNN

Feng et al. [35] 2019 MRI+PET 3D-CNN+FSBi-LSTM

Bakkouri et al. [8] 2019 sMRI 3DMF+GRFU

Cui and Liu [27] 2019 sMRI 3D-DenseNet+TSF
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Table 2 Summary of related
works classified by cerebral
region

Cerebral region Literature

Karasawa et al. [49]

Tang et al. [92]

Esmaeilzadeh et al. [32]

Cheng et al. [22]

Yan et al. [103]

Kam et al. [48]

Whole brain Shmulev et al. [89]

Hosseini et al. [39]

Korolev et al. [53]

Wang et al. [98]

Feng et al. [34]

Feng et al. [35]

Cui and Liu [26]

Li and Liu [56]

Hippocampal area Huang et al. [42]

Bakkouri et al. [8]

Cui and Liu [27]

precisely harming the classification accuracy. Moreover, as indicated in Table 2, the main
3D-CNN approaches were carried out on full brain volumes rather than volumes of interest.
Although recent studies suggest that the deterioration of hippocampal structure, function,
and biochemistry has high relevance in the diagnosis of AD, the most current investiga-
tions of the 3D-CNN for AD diagnosis were still performed on the whole brain volume
instead of hippocampal VOI, which require high cost of computation, memory allocation,
and effort. In view of the scarce existing studies on the AD diagnosis domain, a detailed plan
to overcome the problem of high computational costs, semantic feature ambiguity, and high
inter-class visual similarities between the classes, especially AD and MCI, will be described
in a fair amount of detail.

3 Proposed BG-3DM2F framework

With the rapid progress of artificial intelligence in diagnosing diseases, a CAD system is
being effectively used in AD recognition to emulate radiologist cognition in improving
AD diagnosis with the fast interpretation and making of outcome prediction and therapeu-
tic decisions. Until now, the existing CAD methods used to benefit a lot from a single
3D-CNN feature map representation to capture AD biomarkers which always fail due to
semantic feature ambiguity and high-level similarities between classes, especially AD and
MCI. Aside from the gaps previously mentioned, investigating only one 3D-CNN pipeline
for AD recognition is not good at handling complicated volumetric data for performing
multiple classification analyses. Accordingly, the development of a powerful CAD system
for AD diagnosis has crucially relied on the development of an intelligent system based
on the fusion of multiple 3D-CNN features. In this paper, we proposed a novel CAD sys-
tem, called BG-3DM2F, based on multi-scale 3D-CNN architecture combined with Bi-GRU
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cells to carry out three binary classification problems: AD vs. NC, AD vs. MCI, and NC
vs. MCI using the volumetric sMRI modality. The proposed process was developed in
several stages. First, to improve model building time, we took the hippocampal volumes
as input with a smaller size rather than the large-scale whole brain. To boost the perfor-
mance of our model and avoid overfitting, data augmentation techniques were applied to all
selected VOI for expanding the size of our dataset. Then, we built 3DMS-ChaineNet blocks
to extract the most significant features. The extracted features from the last layer of each
3DMS-ChaineNet block were fed to Bi-GRU cells and preserved by applying Bi-GRFU
architecture to save multi-scale feature abstraction, avoid vanishing gradient problem and
embed each 3DMS-ChaineNet level into a low dimensional semantic space with enhancing
the ability to capture long-term dependencies in the sequence learning model. Finally, the
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Fig. 1 The overview of the proposed BG-3DM2F framework. The process starts from Top to bottom.
The BG-3DM2F system was organized into different stages including data pre-processing, 3D Multi-Scale
Chained Network (3DMS-ChaineNet), Bidirectional Gated Recurrent Fusion Unit (Bi-GRFU), and classi-
fication, providing a completely integrated workflow to potentiate the achievement of CAD for AD. VOI
stands for the volume of interest for the hippocampus. 3D-DWL and 3D-AP represent 3D depth-wise layer
and 3D average pooling, respectively. Bi-GRU is the bidirectional gated recurrent unit while FC-1 and FC-2
are the fully connected layers
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binary classification was performed using two fully connected layers (FC-1 and FC-2). An
overview of the proposed approach is given in Fig. 1.

3.1 Hippocampal VOI extraction

Biological human brains differ from their size and shape [12]. Such morphological vari-
ation of brains leads to difficulties in neuroimaging studies in how to establish a spatial
correspondence between 3D volumetric images for clinical applications like multimodal
information fusion, comparison of between-subjects in a common coordinate space, stereo-
tactic neurosurgery, and analysis of focal morphological differences to study human brain
functions. The academic researchers are largely focusing on creating a reference brain tem-
plate in a Cartesian coordinate system for a three-dimensional space as a common space for
various cerebral subjects to align to [79]. In this study, to overcome the issue of brain shape
and size variabilities from different subjects, a robust transformation of the original sMRI
brain images to a common neuroanatomical space was involved [84]. It is done by spatial
normalization through the affine registration procedure as mentioned in [8, 12–14] to the
Montreal Neurological Institute (MNI-152) template [36], which is defined by the average
of 152 normal MRI scans, without loss of cortical details and impacting on local image fea-
tures. This spatial normalization process perfectly overcomes the inter-subject anatomical
differences in shape, size, and relative orientation. Thus, images from the ADNI database
were resized to [121 × 145 × 121] voxels with isotropic voxel sizes of 1.5 × 1.5 × 1.5
mm3. Note that the voxels should be isotropic to allow the data to be rotated, re-sliced, and
manipulated. Based on the Automated Anatomical Labelling (AAL) parcellation [83], we
extracted the bilaterally symmetrical hippocampus from coronal and axial views and a sin-
gle hippocampal volume from sagittal slices. To yield a hippocampal region representing
the coronal and axial views for further analysis purposes, the average region of interest of
the left and right hippocampus was calculated to get one region of interest per slice. In this
way, the VOIs of dimension [28 × 28 × 121] were obtained. The spatial normalization and
box extraction were fully automated. Since input data should not limit the use of 3D-CNN
ideally, we constructed cubic hippocampal volumes representing various regions of interest
of hippocampal margin and shape characteristics with the size of [28 × 28 × 28] voxels as
indicated in [8] where the 28 slices were selected from the center of each 3D image volume.
Finally, we obtained cubic VOI with a size of [28 × 28 × 28] to build 3D-CNN without
requiring extremely long training time and high computational costs. An overview of the
proposed hippocampal VOI extraction approach is given in Fig. 2.

3.2 Data augmentation

The main power of a 3D-CNN lies in its deep architecture, which allows for extracting a
set of discriminating visual features at multiple levels of abstraction [82]. Since they have
different kinds of volumetric layers, and each layer works differently than the other for the
extraction of visual features, 3D-CNN needs to be equipped with a large amount of dataset
to yield strong generalization ability [57, 104]. Unfortunately, as the number of the original
3D sMRI images is limited, 3D-CNNs are quite difficult to train due to the overfitting issue
which considered as the main risk. To cope with this challenge, one solution is to create fake
data and add them to the dataset by applying data augmentation techniques. This process
artificially extends the size of samples by transforming them and generating extra images
as well as balance their number in each class, intending to enhance the effectiveness of 3D-
CNN. In this paper, we propose label-preserving transformations as a data-space solution
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+
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+

Template MNI sMRI brain images

Fig. 2 The overview of the hippocampal volume of interest selection workflow. The outline of the hip-
pocampal VOI extraction process is composed of three main stages: spatial normalization of sMRI data to
the Montreal Neurological Institute (MNI) space, bilateral hippocampal VOIs extraction using Automated
Anatomical Labeling (AAL) method, and calculation of the average VOI of the two symmetric hippocampal
volumes

to the problem of limited data which can lead to significant improvements in the 3D-CNN
performance and make invariant predictions. The process of applying geometric transfor-
mation on each 3D image of a dataset is now a widely used approach and helps to augment
the proportion of data for the training stability. As revealed in our previous works [6, 8],
this strategy is based on rotating, translating, and reflecting the existing images [33]. Each
extracted VOI was randomly rotated by 10 selected angles θ in the interval 0 ≤ θ ≤ 360.
The rotated VOIs were mirrored and translated by four values of horizontal and vertical pixel
displacements. Resulting from this data augmentation process, the number of hippocam-
pal VOIs was expanded by a factor of 91. This proposed approach enriches the available
training data and consequently enhances the performance of the BG-3DM2F framework.

3.3 3Dmulti-scale chained network (3DMS-ChaineNet)

Recently, with the astonishing development of Two-Dimensional CNN (2D-CNN), state-
of-the-art multi-scale 2D-CNN features-based pattern recognition frameworks have shown
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remarkable strengths in automatically learning the specific features and substantially out-
perform traditional CNN and hand-crafted descriptors [43, 66, 107]. It is currently widely
employed for image classification [18, 44], object localization [24], image super-resolution
[30], and image segmentation [19]. Unfortunately, when dealing with 3D-CNN architec-
tures, existing works do not pay attention to exploring the benefits of multi-scale 3D-CNN
features for improving pattern recognition in volumetric data. Given the scarce existing stud-
ies on this domain, we investigated the benefit of the 3D multi-scale chained network for AD
recognition. The proposed 3DMS-ChaineNet method was evaluated in four blocks denoted
by Leveln, where n is the number of the 3D multi-scale chained blocks. As shown in Fig. 3,
The constructed 3DMS-ChaineNet blocks, named Level1, Level2, Level3 and Level4, are
built in a similar structure. Each 3DMS-ChaineNet level has four parallel 3D-CNN scale
paths, so that each of them consists of Convolutional (C) layers, Scaled Exponential Linear
Unit (SELU), Local Response Normalization (LRN) layers, Fusion Layers (FL), and Global
Fusion Layers (GFL).

2 3DMS-ChaineNet

Level4Level1 Level3Level2

C

SELU

LRN

C

SELU

LRN

C

SELU

LRN

FL

C
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LRN

C

SELU

LRN

FL
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LRN
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FL

Scale-1 Scale-2 Scale-3
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LRN
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LRN
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FL

Scale-4
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Fig. 3 The flowchart of the proposed 3DMS-ChaineNet method. The proposed 3DMS-ChaineNet method
consists of four blocks, which are denoted by Level1, Level2, Level3 and Level4, structured in similar way.
Each level has four parallel 3D-CNN scales similar in architectures but different in convolutional kernel sizes
and LRN, FL, and GFL parameters. The multiple kernel scales were performed to focus on low and high
level localized features for coping with the complex morphological structures of hippocampal tissues
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The 3D convolutional layer (C) is the core building component of a 3D-CNN. It consists
of several kernels whose elements need to be trained for extremely reacting to a local area
of the input. Specifically, the output of previous layers is convolved with multiple learned
3D weight matrices using the small receptive field. Then, the result is processed by an
exponential linear operation to generate normalized output. To extract feature maps of Ci ,
the exponential linear function is applied to each element of Ci−1. The output of the 3D
convolutional layer at position (x, y, z) is given as:

C
xyz
ij = SELU

⎛
⎝bij +

∑
p

Li−1∑
l=0

Mi−1∑
m=0

Ni−1∑
n=0

Wlmn
ijp × C

(x+l)(y+m)(z+n)

(i−1)p

⎞
⎠ (1)

Where i and j are two indexes of the layer and feature map, respectively. (Li , Mi , Ni) is
the 3D kernel size of ith layer. Wlmn

ijp represents the weight of (l, m, n)th position to the pth

feature map. bij denotes bias or offset of the j th feature map at the ith 3D convolution layer,
and SELU stands for scaled exponential linear unit activation function. It is firstly proposed
by Klambauer et al. [51] in 2017 to regularize the high variance of the activations and avoid
exploding and vanishing gradients. As shown below, SELU function gives an output a if a

is positive and α × (exp(a) − 1) otherwise:

SELU(a) = λ

{
a a ≥ 0

α × (exp(a) − 1) otherwise
(2)

Where λ and α are two fixed parameters. In this paper, SELU function was used with
λ=1.0507 and α=1.6732.

Since the 3D-CNN model usually faces the challenge of unbounded activations, the local
response normalization, LRN, is a better alternative to deal with this problem. LRN is firstly
proposed by Krizhevsky et al. [54] in 2012 as a regularizer mechanism to diminish the test
error of the AlexNet model. In this paper, the LRN was incorporated with the SELU function
to improve the convergence speed and AD recognition performance by encouraging the
competition for unrestrained activities among groups of neurons at the same location, but in
different activation maps. Denoting by Cxyz the activity of a neuron computed by applying
weight W at position (x, y, z) and the SELU exponential linearity, The LRN is expressed as
follow:

LRNxyz = Cxyz/

⎛
⎝λ1+λ2×

min(T −1,i+ z
2 )∑

j=max(0,i− z
2 )

(
C

xyz
j

)2

⎞
⎠

λ3

(3)

Where λ1, λ2, and λ3 are three fixed hyper-parameters. Cxyz represents the 3D convolu-
tional layer output after applying the SELU function at position (x, y, z) in the feature
map, T stands for a total number of weights, and z refers to the size of the normalization
neighborhood.

Since the hippocampal VOIs are extremely complex and often show significant shape
variations, especially in the MCI stage, a single 3D-CNN feature map is not greatly rep-
resentative. Therefore, to generate latent representations for AD diagnosis, an innovative
discriminant criterion using the 3D multi-scale feature fusion approach was investigated.
To perform this task, each 3DMS-ChaineNet block was built by inserting the fusion layers,
FLs, which enable the automatic fusion of the local response normalization layers. The FL
is expressed as follow:

FLxyz = ϕ1 × LRN
xyz

1 � ϕ2 × LRN
xyz

2 � ϕ3 × LRN
xyz

3 (4)
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Table 3 Structure parameters of 3DMS-ChaineNet block

Module Layer Kernel shape Specifications

C [3 × 3 × 3] × 128 (P=1, S=1)

Scale-1 LRN - (λ1 = 2, λ2 = 10−4, λ3 = 0.7)

FL - (ϕ1 = 0.80, ϕ2 = 0.75, ϕ3 = 0.30)

C [5 × 5 × 5] × 128 (P=2, S=1)

Scale-2 LRN - (λ1 = 1, λ2 = 10−5, λ3 = 0.5)

FL - (ϕ1 = 0.75, ϕ2 = 0.50, ϕ3 = 0.25)

C [7 × 7 × 7] × 128 (P=3, S=1)

Scale-3 LRN - (λ1 = 2, λ2 = 10−4, λ3 = 0.75)

FL - (ϕ1 = 0.25, ϕ2 = 0.20, ϕ3 = 0.15)

C [9 × 9 × 9] × 128 (P=4, S=1)

Scale-4 LRN - (λ1 = 1, λ2 = 10−4, λ3 = 0.5)

FL - (ϕ1 = 0.15, ϕ2 = 0.25, ϕ3 = 0.15)

Global fusion GFL - (η1 = 0.8, η2 = 0.95, η3 = 0.85, η4 = 0.55)

Where � is element-wise product, ϕ1, ϕ2, and ϕ3 are three weights. Each element of LRN1,
LRN2 and LRN3 is multiplied by ϕ1, ϕ2 and ϕ3, respectively.

For the (GFL), the last layer of each 3DMS-ChaineNet block can be represented as:

GFLxyz = η1 × FL
xyz

1 � η2 × FL
xyz

2 � η3 × FL
xyz

3 � η4 × FL
xyz

4 (5)

Where η1, η2, η3, and η4 are four weights of FL1, FL2, FL3, and FL4, respectively.
In all 3DMS-ChaineNet blocks, we use a multi-scale feature approach as the base archi-

tecture. In each 3DMS-ChaineNet block, four scales of convolutional layers with size of
[3 × 3 × 3], [5 × 5 × 5], [7 × 7 × 7] and [9 × 9 × 9], SELU activation function, LRN,
and element-wise multiplication layers (FL) are involved. Within each 3D-CNN stream,
the three convolutional layers are completely connected by summing the outputs of preced-
ing layers as the inputs of the Fusion Layer (FL). The four parallel 3D-CNN paths were
connected via Global Fusion Layer (GFL) which took all the previous FL layers as the
input. The arrangement and description of the 3DMS-ChaineNet block are shown in Fig. 3.
The constructed 3DMS-ChaineNet levels were built in a similar structure and by the same
parameters, while the four parallel 3D-CNN scales of each 3DMS-ChaineNet block were
implemented in a similar structure and built by the same number of kernels (n) and stride
(S), and they differ essentially from the kernel shape [width × height × volume] × n,
padding (P), LRN and FL parameters. The 3D multi-scale chained network blocks are ran-
domly initialized using the Xavier weight initialization algorithm [62] and trained with the
sMRI dataset. The Table 3 shows the parameters specification of 3DMS-ChaineNet block.

3.4 Bidirectional gated recurrent fusion unit (Bi-GRFU)

As introduced in the above sections, GRU is the most recently emerged type of RNN for
sequential data analysis [64]. It is proved to be more powerful in the different fields of
research applications and widely used as an alternative to the LSTM model [29]. To store
hierarchical 3D multi-level features, we design a novel sequential model based on Bi-GRU
[111] and marked as Bi-GRFU. Our proposed Bi-GRFU consists of 3D Depth-Wise Layer
(3D-DWL), 3D Average Pooling (3D-AP), flatten layer, and Bi-GRU cells to embed each
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3DMS-ChaineNet level into a low dimensional semantic space without losing relevant fea-
tures of hippocampal VOI. An overview of the proposed Bi-GRFU approach is given in
Fig. 4.

As the number of feature maps often increases with the depth of the network, the 3D
Depth-Wise Layer (3D-DWL) [97], which is a linear projection layer, was used to reduce
the number of parameters in 3D convolutions. Then, to decrease the dimension depth-wise,
we performed one-to-one convolution with a kernel shape of [1 × 1 × 1] × 32, which is
regarded as a compression layer with a compression factor of 0.25.

3D Pooling module is a significant building block of 3D-CNN. The main idea regard-
ing the application of the pooling component is to progressively down-sample an input
representation with highlighting the more informative features, alleviating the drawback of
3D-CNN, and improving the structure information. The major property of the 3D pooling

3 Bi-GRFU

3D-DWL 3D-DWL 3D-DWL 3D-DWL

3D-AP 3D-AP 3D-AP 3D-AP

Bi-GRU Bi-GRU Bi-GRU Bi-GRU

GRU GRU GRU GRU

GRU GRU GRU GRU

V1 V2 V3 V4

Fig. 4 The flowchart of the proposed Bi-GRFU method. This pipeline illustrates the low dimensional
semantic space embedding and bidirectional sequence model phases. The low dimensional semantic space
embedding was carried out using 3D average pooling and 3D depth-wise layers to cope with high computa-
tional costs, while Bi-GRU was proposed as a bidirectional sequence model to mitigate vanishing gradient
problem and control each 3DMS-ChaineNet level stream. The vectors V1, V2, V3 and V4 represent flatten
layers used to reshape 3D-AD matrices to have one dimensional maps
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layer is to decrease the spatial resolution of the feature map without requiring a large num-
ber of resources and aggravating classification performance. Aside from the reduction of
computational burdens, the pooling layer can maintain translation invariance. In this paper,
we adopt a 3D Average Pooling (3D-AP) approach [40] which is a concept in 3D-CNN that
calculates the average of the elements in each pooling region to obtain a condensed 3D fea-
ture map. Formally, the 3D Average Pooling (3D-AP) at pixel (x, y, z) with a filter size of
L × M × N is expressed as:

3D − AP(x, y, z) = 1

L × M × N
×

L−1∑
l=0

M−1∑
m=0

N−1∑
n=0

I (x + l, y + m, z + n) (6)

Where I is the input of pooling kernel window and I ∈ RL×M×N . In our case, we used
3D-AP with stride S = 2 and kernel size 2 × 2 × 2.

In order to deal with long-term dependencies in practice with fewer parameters and less
computational time, GRU was investigated in this study. It can be expressed as the following
four steps:

zt = δ(Wz × ht−1 + Wz × xt + bz) (7)

rt = δ(Wr × ht−1 + Wr × xt + br) (8)

h′
t = tanh(Wh × (rt � ht−1) + Wh × xt + bh) (9)

−→
h t = (1 − zt ) � ht−1 + zt � h′

t (10)

Where � is an element wise multiplication. The terms xt , zt , rt , h′
t and

−→
h t are, respec-

tively, the input sequence vector, the update gate, the reset gate, the new candidate sate and
the output state at current time t . δ is the logistic sigmoid function and tanh(.) represents
hyperbolic tangent function. Wz, Wr and Wh are the weighted matrics and bz, br and bh

are the biases of GRU to be learned during training. The update gate zt controls how much
old information is kept and how much new information is added, whilst the reset gate rt
controls the size of contribution of past state to the candidate state. When rt equals zero, it
forgets the past state. Thus, the output representation of the forward GRU unit is denoted

by
−→
h t and the output representation of the backforward GRU unit is denoted by

←−
h t . The

output representation of Bi-GRU is denoted by ht = [−→h t : ←−
h t ] where the operation (:)

denotes the concatenation of the vectors. We apply the Bi-GRU which consists of a forward
and backward GRU to provide complete previous and future contextual information for
each point in the output layer, improve memory ability, and mitigate the vanishing gradients
problem. After Bi-GRU processing, the forward and backward outputs are concatenated as
the input of the first fully connected layer. The concatenated vector contains bidirectional

Table 4 Structure parameters
of the proposed BG-3DM2F
architecture using hippocampal
VOI as input

Module Layer Output shape

Input Input [28 × 28 × 28] × 1

3DMS-ChaineNet Leveln [28 × 28 × 28] × 128

3D-DWL [28 × 28 × 28] × 32

Bi-GRFU 3D-AP [14 × 14 × 14] × 32

GRU 87808

Concatenation 702464

Classification FC-1 87808

FC-2 2
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information of the entire hippocampal volume which conveys more information to improve
the representation. The structure parameters of the proposed BG-3DM2F framework are
listed in Table 4.

4 Experiment analysis and evaluation

At this stage, the experimental results of the BG-3DM2F framework, which were pointed
out in Section 3 to this paper, are shown and explained precisely and in exquisite detail. To
perform three binary classifications, namely AD vs. NC, AD vs. MCI, and NC vs. MCI,
we confirmed and validated the proposed BG-3DM2F system by iteratively training the
network according to the number of 3DMS-ChaineNet blocks (Leveln) and the Bi-RNN
variants: Bi-LSTM and Bi-GRU. We demonstrate the robustness of the methodology on the
ADNI dataset. To prove the efficiency of our proposed strategy, statistical measurements
and quantitative evaluation are carried out. Our approach was compared with the most recent
existing methods for AD recognition. All these methods were tested on the same dataset
(ADNI) and compared using the same metrics (Accuracy, sensitivity, and specificity).

4.1 Data acquisition

The data used in this study were collected from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database [46] (adni.loni.usc.edu). The ADNI was launched in 2003 as
a public-private partnership led by the National Institute on Aging (NIA), the National
Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Admin-
istration (FDA), private pharmaceutical companies, and non-profit organizations. ADNI
includes several biomarkers of Alzheimer’s disease beyond neuropsychological tests, such
as cerebrospinal fluid, structural and functional magnetic resonance imaging, Positron
Emission Tomography, and other biological data. Ethical approval for the ADNI study was
obtained by the ADNI investigators. For up-to-date information, see www.adni-info.org. In
this paper, we used structural MRI data of patients with Alzheimer’s disease (AD), normal
controls (NC), and mild cognitive impairment (MCI) from ADNI-1 which is the result of
efforts of many co-investigators from a broad range of academic institutions and private cor-
porations, and subjects have been recruited from over 50 sites across the U.S. and Canada.
Particularly, the dataset was extracted from the ADNI-1 with 1.5T scanners that it con-
tains 1075 T1-weighted sMRI images, comprising 188 AD, 401 MCI, and 229 NC images.
The main demographic characteristics of 818 subjects are described in Table 5, including
detailed information of NC, MCI, and AD classes such as the number of participants of
each gender, mean age, and Mini-Mental State Examination (MMSE) score. As shown in
Table 5, there is a limited number of brain scans of subjects that were annotated by spe-
cialized radiologists. To overcome this limitation, we applied data augmentation techniques
to enlarge the dataset as described in Section 3.2. As indicated by Table 6, we obtained a

Table 5 Demographic
description of the ADNI-1
dataset group

Classes Subjects Age Gender (M/F) MMSE

AD 188 75.36 ± 7.5 99/89 23.28 ± 2.0

MCI 401 74.85 ± 7.4 258/143 27.01 ± 1.8

NC 229 75.97 ± 5.0 119/110 29.00 ± 1.0

adni.loni.usc.edu
www.adni-info.org
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Table 6 A detailed description
of the representative hippocampal
VOIs divided into training,
validation, and testing subsets

AD MCI NC Total

Tain 10260 10260 10260 30780

Validation 3420 3420 3420 10260

Test 3420 3420 3420 10260

Total 17100 17100 17100 51300

total amount of 51300 VOIs. The typical data set proportions are 60% for training, 20% for
validation and 20% for testing [71, 102].

4.2 Implementation details

The hippocampal VOI selection was performed with the SPM12 program and MATLAB
software with the MarsBaR toolbox [95]. The proposed method has been developed using
the Keras library with python wrapper, and Compute Unified Device Architecture (CUDA)
enabled a parallel computing platform to access the computational resources of the Graph-
ics Processing Unit (GPU). The available hardware, used for training, is a PC with Intel
Xeon E5-1603 v4 Quad-Core, 2.80 GHz processor base frequency, 10 MB cache, 16 GB
RAM, and a single NVIDIA GeForce GTX 1080 Ti with 11 GB memory. The performance
of a deep CNN model depends critically on its structure and the network configuration [61].
In this paper, there still remain a number of network hyper-parameters to be defined. Many
of these hyper-parameters were chosen by experimenting until the model began to converge
effectively. The proposed BG-3DM2F system was trained using Adaptive Moment Estima-
tion (Adam) algorithm [50] with learning rate α = 10−3, first moment-decay β1 = 0.9
and second moment-decay β2 = 0.999 using Xavier algorithm for weight initialization
and SELU activation function inserted after each convolutional layer, where the softmax
activation function was combined with the cross-entropy for training the network. The opti-
mization ran for 200 epochs with mini-batch size 32. The network was regularized using
the dropout technique [9] with factor ρ = 0.25 and L2 regularization [58] with ε = 0.05
as it penalized 5% of the current weight value to prevent the overfitting issues. As indicated
in Table 7, to carry out the three binary classification problems (AD vs. NC, AD vs. MCI,
and NC vs. MCI), the training took, on average, about 12 hours, 51 minutes, and 7.2 sec-
onds. For testing, on average, it takes 4 hours, 33 minutes, and 54 seconds. The evaluation
of the performance of our proposed system was carried out using two quantitative methods
including graphical and statistical analysis as detailed in our previous works [6, 7]. The first
method for evaluating our proposed system is the Receiver Operating Characteristic (ROC)
curve, while the second consists of using six assessment metrics: accuracy (Acc), sensitivity
(Sen), specificity (Spe), precision (Pre), F1-Score (FSc), and Area Under the ROC Curve
(AUC).

Table 7 The computational time
in hours (h) required by the
BG-3DM2F framework to
recognize AD

Tasks Training time (h) Testing time (h)

AD vs. NC 12.794 4.562

AD vs. MCI 12.863 4.568

NC vs. MCI 12.899 4.566

Average 12.852 4.565
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4.3 Ablation study

In this section, a series of comparative experiments are conducted to select the optimal
network structure. As shown in Fig. 5, to verify the feasibility of the BG-3DM2F frame-
work, the experiments are mainly divided into four parts, and each part was evaluated in

1

2

3

Level4

3D-DWL 3D-DWL 3D-DWL 3D-DWL

3D-AP 3D-AP 3D-AP 3D-AP

Bi-GRU /
Bi-LSTM

Bi-GRU /
Bi-LSTM

Bi-GRU /
Bi-LSTM

Bi-GRU /
Bi-LSTM

Level1 Level3Level2

Concatenation

FC-1

FC-2

Level4Level1 Level3Level2 Level5 FC-1 FC-2

3DMS-ChaineNet

3DMS-ChaineNet+Fusion

Level4Level1 Level3Level2 Level5

Concatenation

FC-1

FC-2

Level5

3D-DWL

3D-AP

Bi-GRU /
Bi-LSTM

3DMS-ChaineNet+Bi-GRFU / Bi-LSFU

Fig. 5 The overview of detailed ablation studies to investigate the efficiency gains obtained by the
various components of the BG-3DM2F framework and better demonstrate the improvements obtained
by 3DMS-ChaineNet, 3DMS-ChaineNet+Fusion, 3DMS-ChaineNet+Bi-LSFU, and 3DMS-ChaineNet+Bi-
GRFU models at each level
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Table 8 Quantitative result of different 3DMS-ChaineNet levels with and without fusion and sequence
models on the testing subset in terms of accuracy, sensitivity, specificity, precision, F1-Score, and AUC
metrics

Methods Leveln Tasks Acc. Sen. Spe. Pre. FSc. AUC

(%) (%) (%) (%) (%) (%)

AD vs. NC 80.39 81.87 78.91 79.52 80.68 76.16

Level2 AD vs. MCI 76.12 74.73 77.51 76.87 75.78 75.29

NC vs. MCI 76.79 75.90 77.69 77.28 76.58 76.42

AD vs. NC 80.90 88.24 73.56 76.95 82.21 76.59

3DMS-ChaineNet Level3 AD vs. MCI 75.81 76.37 75.26 75.53 75.95 76.14

NC vs. MCI 76.37 74.47 78.27 77.41 75.91 75.38

AD vs. NC 81.35 79.59 83.12 82.50 81.02 76.35

Level4 AD vs. MCI 75.97 73.91 78.04 77.09 75.47 75.03

NC vs. MCI 75.83 76.16 75.49 75.66 75.91 75.16

AD vs. NC 82.16 83.21 81.11 81.50 82.34 77.23

Level5 AD vs. MCI 77.28 78.04 76.52 76.87 77.45 76.21

NC vs. MCI 77.42 78.18 76.66 77.01 77.59 76.66

AD vs. NC 83.05 83.09 83.01 83.02 83.06 78.43

Level2 AD vs. MCI 75.67 77.69 73.65 74.67 76.15 76.18

NC vs. MCI 80.90 73.74 88.07 86.07 79.43 77.00

3DMS-ChaineNet AD vs. NC 84.25 82.77 85.73 85.29 84.01 81.56

+ Level3 AD vs. MCI 80.90 81.92 79.88 80.28 81.09 79.71

Fusion NC vs. MCI 83.66 85.11 82.22 82.72 83.90 80.39

AD vs. NC 86.38 83.45 89.32 88.66 85.97 83.75

Level4 AD vs. MCI 84.61 84.41 84.82 84.76 84.58 81.10

NC vs. MCI 85.77 88.30 83.24 84.05 86.12 82.42

AD vs. NC 86.88 85.61 88.15 87.84 86.71 83.91

Level5 AD vs. MCI 85.92 84.73 87.10 86.79 85.75 81.98

NC vs. MCI 86.03 88.18 83.88 84.55 86.33 82.59

AD vs. NC 92.83 94.09 91.57 91.78 92.92 90.66

Level2 AD vs. MCI 90.71 90.87 90.55 90.58 90.73 85.38

NC vs. MCI 91.65 90.11 93.18 92.97 91.52 89.41

3DMS-ChaineNet AD vs. NC 94.13 93.97 94.29 94.27 94.12 93.40

+ Level3 AD vs. MCI 92.32 92.33 92.30 92.31 92.32 91.27

Bi-LSFU NC vs. MCI 93.15 93.85 92.45 92.56 93.20 92.13

AD vs. NC 96.60 96.19 97.01 96.99 96.59 95.73

Level4 AD vs. MCI 93.69 94.21 93.18 93.25 93.73 93.19

NC vs. MCI 95.27 94.03 96.52 96.43 95.21 94.50

AD vs. NC 96.47 95.96 96.98 96.95 96.45 95.61

Level5 AD vs. MCI 92.55 91.25 93.85 93.69 92.46 92.53
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Table 8 (continued)

Methods Leveln Tasks Acc. Sen. Spe. Pre. FSc. AUC

(%) (%) (%) (%) (%) (%)

NC vs. MCI 94.80 94.64 94.97 94.95 94.80 93.74

AD vs. NC 93.15 93.74 92.57 92.65 93.19 92.70

Level2 AD vs. MCI 91.25 90.84 91.66 91.59 91.22 90.04

NC vs. MCI 92.04 91.52 92.57 92.49 92.00 91.22

3DMS-ChaineNet AD vs. NC 94.75 94.50 95.00 94.97 94.73 94.65

+ Level3 AD vs. MCI 92.99 93.36 92.63 92.68 93.02 93.27

Bi-GRFU NC vs. MCI 93.94 93.83 94.06 94.05 93.94 93.85

AD vs. NC 98.12 97.51 98.74 98.72 98.11 96.58

Level4 AD vs. MCI 95.26 95.99 94.53 94.61 95.29 94.86

NC vs. MCI 96.97 96.72 97.22 97.20 96.96 95.32

AD vs. NC 97.11 96.40 97.83 97.80 97.09 96.43

Level5 AD vs. MCI 93.68 95.00 92.36 92.56 93.76 93.18

NC vs. MCI 95.83 96.14 95.52 95.55 95.84 94.50

The bold entries represent the best performances obtained for each ablation experiment

four iterations. The first part addresses the effect of the number of 3DMS-ChaineNet blocks
without fusion on AD recognition performance. In the second part, we suggest connect-
ing these 3DMS-ChaineNet blocks, at different levels, using an additional concatenation
layer to combine the 3DMS-ChaineNet features of each block. In the third and fourth
parts, the BG-3DM2F framework is iteratively trained using two categories of sequential
architectures, namely Bidirectional Long Short-term Fusion Unit (Bi-LSFU) and Bi-GRFU
by applying Bi-LSTM [35] and Bi-GRU [111], respectively, and the quality classifica-
tion results are compared through testing. From Table 8, we can see that the different
choices make different results. In order to figure out which component is working, we car-
ried out four ablation experiments, termed as 3DMS-ChaineNet, 3DMS-ChaineNet+Fusion,
3DMS-ChaineNet+Bi-LSFU, and 3DMS-ChaineNet+Bi-GRFU, which were evaluated in
four iterations denoted by Leveln, where n ∈ {2,3,4,5}. Practically, we started the compar-
ative experiments from the second level (Level2) and increased the number of levels up to
5 (Level5), because, from Level2, the convergence of the learning curves is clearly notice-
able on the training stage and the plots of training and validation losses started to decrease
to a point of stability which indicate that knowledge has been obtained. The highest accu-
racy, sensitivity, specificity, precision, F1-Score, and AUC for each ablation experiment are
highlighted in bold.

From the results shown in Table 8, the 3DMS-ChaineNet at Level5 gave better classi-
fication compared with 3DMS-ChaineNet at Level1, Level2, Level3, and Level4 in terms
of accuracy, F1-Score and AUC. Similar to 3DMS-ChaineNet, the results of 3DMS-
ChaineNet+Fusion at Level5 has also a better classification effect than other levels.
Moreover, as the number of 3DMS-ChaineNet blocks increases, the accuracy, F1-Score,
and AUC improve significantly and 3DMS-ChaineNet+Fusion in the fifth iteration (Level5)
performs better than 3DMS-ChaineNet in all statistical metrics for the three tasks. When
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Fig. 6 Bar graph illustrating the comparison of the performances of BG-3DM2F components in terms of F1-
Score for AD vs. NC, AD vs. MCI, and NC vs. MCI classification. (1) is 3DMS-ChaineNet model at Level5.
(2) represents 3DMS-ChaineNet+Fusion model at Level5. (3) stands for 3DMS-ChaineNet+Bi-LSFU model
at Level4. (4) refers to the 3DMS-ChaineNet+Bi-GRFU model at Level4

compared to 3DMS-ChaineNet+Fusion at Level5, our algorithm 3DMS-ChaineNet+Bi-
GRFU at Level4 achieves an AUC gain of 12.67% for AD vs. NC, 12.88% for AD vs.

Fig. 7 The ROC curves with the corresponding AUCs of 3DMS-ChaineNet model at Level5 for the three
binary classification tasks: AD vs. NC, AD vs. MCI, and NC vs. MCI
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Fig. 8 The ROC curves with the corresponding AUCs of 3DMS-ChaineNet+Fusion model at Level5 for the
three binary classification tasks: AD vs. NC, AD vs. MCI, and NC vs. MCI

MCI, and 12.73% for NC vs. MCI. 3DMS-ChaineNet+Bi-LSFU at Level4 and Level5 per-
forms better than 3DMS-ChaineNet + Fusion but worse than 3DMS-ChaineNet+Bi-GRFU
in the same iterations. Theoretically, the greater the number of convolutional layers, the
higher the accuracy. Unfortunately, this is not the case in our model. From the empirical
point of view, the Level5 decreases the performance of both 3DMS-ChaineNet+Bi-LSFU
and 3DMS-ChaineNet+Bi-GRFU models compared to Level4. The predictive models that
yielded the highest peak performance in terms of F1-Score are shown in Fig. 6.

As illustrated in figures (Figs. 7, 8, 9 and 10), the ablation studies were evaluated using
ROC curves which present the predictive models that achieved peak performance in terms
of AUC. During the diagnosis procedure, the classification of AD against MCI is the

Fig. 9 The ROC curves with the corresponding AUCs of 3DMS-ChaineNet+Bi-LSFU model at Level4 for
the three binary classification tasks: AD vs. NC, AD vs. MCI, and NC vs. MCI
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Fig. 10 The ROC curves with the corresponding AUCs of 3DMS-ChaineNet+Bi-GRFU model at Level4 for
the three binary classification tasks: AD vs. NC, AD vs. MCI, and NC vs. MCI

most challenging and very tedious task. From the results summarized in Table 8, the pro-
posed BG-3DM2F system achieved the AUC of 94.86% for AD vs. MCI and 95.32% for
NC vs. MCI. When AD was tested against NC, the results were notable with significant
improvements in terms of AUC, yielding 96.58%.

4.4 Comparison with the state-of-the-art

As shown in Table 9, we make a comparison between the proposed BG-3DM2F system and
existing state-of-the-art methods to evaluate and confirm the quality of this study. Based on
the summary and comparison of the AD research results discussed in Section 2, it is difficult
to evaluate the BG-3DM2F system and ensure its quality that achieves high effectiveness
in terms of AD diagnosis, because the dataset, the classification algorithm (binary or multi-
class classification), and quantitative evaluation methods are not standardized. As a result,
we should assure that for a dependable comparison and reliable clinical research, it would be
necessary to compare the performance of the proposed method with those evaluated on the
same dataset using the same evaluation metrics for validating the performance of these three
binary classifications: AD vs. NC, AD vs. MCI, and NC vs. MCI. To perform this task, nine
state-of-the-art methods for AD diagnosis are compared with our proposed algorithm. All
these methods were carried out on the ADNI dataset using three evaluation metrics, namely
accuracy, sensitivity, and specificity. The visual comparison is given in Table 9 demonstrates
that our best performing network outperforms the Gauss-Laguerre (GL) circular harmonic
functions combined with Bag-of-Visual-Words (BVW) and Late Fusion (LF) of classifica-
tion results (GL-BVW-LF) on two biomarkers including the hippocampus and cerebrospinal
fluid [12], GL circular harmonic functions combined with BVW, Principal Component
Analysis (PCA) and Support Vector Machines (SVM) (GL-BVW-PCA-SVM) [14], Modi-
fied LeNet (MLeNet) [2], GL circular harmonic functions combined with BVW, Multiple
Kernel Learning (MKL), and SVM (GL-BVW-MKL-SVM) [13], Cross-Modal Transfer
Learning (CMTL) [3], Modified architectural pattern of DenseNet-121 (MDenseNet-121)
[45], Multiple Kernel Boosting (MKB) [60], 3D Fine-Tuning CNN (3DFTCNN) [92], and



Multimedia Tools and Applications

Table 9 Comparison between the proposed method and other algorithms using the ADNI dataset

Methods Tasks Year Acc.% Sen.% Spe.%

AD vs. NC 87.00 75.50 100

GL-BVW-LF [12] AD vs. MCI 2014 72.23 75.00 70.00

NC vs. MCI 78.22 70.73 83.34

AD vs. NC 83.70 78.80 85.70

GL-BVW-PCA-SVM [14] AD vs. MCI 2015 76.50 78.90 52.80

NC vs. MCI 66.70 62.00 68.30

AD vs. NC 82.80 79.60 85.90

MLeNet [2] AD vs. MCI 2016 62.50 60.00 64.00

NC vs. MCI 66.00 73.70 58.70

AD vs. NC 90.20 82.92 97.20

GL-BVW-MKL-SVM [13] AD vs. MCI 2017 76.63 65.62 81.33

NC vs. MCI 79.42 71.58 86.05

AD vs. NC 92.50 94.70 90.40

CMTL [3] AD vs. MCI 2018 85.00 93.70 79.10

NC vs. MCI 80.00 92.80 73.00

AD vs. NC 94.97 94.33 95.89

MDenseNet-121 [45] AD vs. MCI 2018 91.98 90.47 95.38

NC vs. MCI 74.70 70.96 78.20

AD vs. NC 94.65 95.03 91.76

MKB [60] AD vs. MCI 2018 88.63 91.55 86.25

NC vs. MCI 84.79 88.91 80.34

AD vs. NC 96.81 96.30 97.20

3DFTCNN [92] AD vs. MCI 2018 88.43 88.00 88.90

NC vs. MCI 92.62 92.20 93.10

AD vs. NC 97.03 96.28 97.77

3DMSF-GRU [8] AD vs. MCI 2019 93.42 95.20 91.63

NC vs. MCI 95.90 97.04 94.76

AD vs. NC 98.12 97.51 98.74

BG-3DM2F (Ours) AD vs. MCI 2020 95.26 95.99 94.53

NC vs. MCI 96.97 96.72 97.22

shallow 3D Multi-Scale Feature blocks combined with GRU cells (3DMSF-GRU) [8].
These state-of-the-art approaches can be categorized into four major following groups. The
handcrafted methods [12–14, 60], shallow 2D-CNN approaches [2, 3], deep 2D-CNN [45]
and 3D-CNN [8, 92]. More importantly, based on the shallow multi-scale 3D-CNN com-
bined with unidirectional GRU as described in [8], by introducing the Bi-GRU cells and
more fused 3D convolutional layers, we have an accuracy gain of 1.09%, 1.84% and 1.07%
for AD vs. NC, AD vs. MCI and NC vs. MCI, respectively. Furthermore, when we com-
pared the proposed method with those evaluated on both modalities; sMRI and Diffusion
Tensor Imaging (DTI) [3, 13], we found that the proposed BG-3DM2F framework per-
forms well in separating the classes, especially for the most challenging classification task
(AD vs. MCI).
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5 Discussion

In this paper, we proposed an optimal data representation framework for CAD system which
is recently regarded as an indispensable system to support decision-making processes in the
diagnosis of AD using volumetric neuroimaging data. Our work is motivated by the follow-
ing observations. First, hippocampal atrophy is a key feature of neurodegeneration and it is
widely considered as a structural magnetic resonance imaging biomarker for Alzheimer’s
disease diagnosis. Second, to perform visual recognition in the three-dimensional domain,
3D-CNN has achieved a significant breakthrough and become the mainstream approach in
different challenging medical imaging tasks, such as image classification, object detection,
semantic segmentation, and content-based image retrieval. In recent years, many medical
imaging studies have applied 3D-CNNs and reported improved performance for a broad
range of medical tasks. Third, currently, the bidirectional sequence model provides comple-
mentary advantages in modeling, including learning a continuous representation, encoding
and managing sequential data, capturing contextual information, mitigating the vanishing
gradient problem, and preserving the information state over long periods. Inspired by these
observations, we find that the CAD systems can benefit from 3D-CNN structures and bidi-
rectional sequence models to recognize AD. To this end, we proposed a novel approach to
retain all 3D-CNN levels in the decision-making process based on a 3D multi-scale feature
fusion and a bidirectional sequence model. Specifically, we used Bi-GRU to store hierarchi-
cal 3D multi-level features into a low dimensional semantic space. To evaluate our approach,
we conduct experiments on the ADNI dataset. Among several evaluation procedures, the
randomly partitioning of a dataset into 60% for training, 20% for validation, and 20% for
testing are the most commonly used in the literature to evaluate the results of hippocampal
atrophy classification, since it avoids overfitting when testing the generalization ability of
the classification algorithm.

To better demonstrate the effectiveness of the proposed BG-3DM2F framework and the
improvements obtained by different modules in its network, two main study axes are pre-
sented in this paper. In the first axis, we have analyzed the performance results with the
change in the number of 3DMS-ChaineNet blocks, Bi-LSTM [35], and Bi-GRU [111] cells
in our method by conducting empirical experiments on the ADNI dataset. The results of the
evaluation related to four iterations were presented in Table 8. These findings deliver impor-
tant intuitions regarding hippocampal volume features. The best performance was achieved
at Level5 when using five 3DMS-ChaineNet blocks with and without fusion. Given that
deeper networks have a better ability for semantic abstraction than shallow ones, we sup-
posed that integrating more 3DMS-ChaineNet blocks and Bi-LSTM or Bi-GRU cells into
our proposed framework could yield outstanding performance. Unfortunately, from the per-
spective of modeling, both 3DMS-ChaineNet+Bi-LSFU and 3DMS-ChaineNet+Bi-GRFU
models at Level5 perform significantly worse compared to these models at Level4 in terms
of accuracy, F1-Score, and AUC metrics for all tasks. The second study axis is conducted
to demonstrate the potentiality of the feature fusion, Bi-LSTM, and Bi-GRU. According
to statistical outcomes shown in Table 8, we gain three significant reports. Firstly, it is
noticeable that the single 3DMS-ChaineNet stream without fusion is not sufficient for accu-
rate AD recognition. Secondly, these findings reaffirm the superiority of Bi-GRU which is
more appropriate to preserve information than Bi-LSTM. Finally, the experiments on ADNI
datasets reveal that integrating sequence models; Bi-LSTM and Bi-GRU cells into 3D-
CNN can automatically focus on critical information, harvest discriminatory features, and
strengthen the discriminative representation for AD diagnosis compared with the existing
conventional 3D-CNN frameworks.



Multimedia Tools and Applications

To confirm the quality of the BG-3DM2F algorithm, our results were compared with nine
previous works. These methods can be broadly categorized into four classes: the handcrafted
methods [12–14, 60], shallow 2D-CNN approaches [2, 3], deep 2D-CNN [45], and 3D-
CNN [8, 92]. By comparing the results in Table 9, it is remarkable that our proposed system
achieved promising results in terms of accuracy, sensitivity, and specificity. From the anal-
ysis of these results, it is evident that our proposed algorithm is more robust as compared to
the three recent deep learning state-of-the-art works, namely modified DenseNet-121 [45],
3D fine-tuning convolutional neural network [92] and shallow multi-scale 3D-CNN com-
bined with the GRU cells [8]. The optimization algorithm used in most of these previous
works is Stochastic Gradient Descent (SGD), which is very slow, and causes convergence
to the local minima rather than the global minima [52]. Although the Rectified Linear Unit
(ReLU) is the most popular activation function and widely used in 3D-CNN, the use of
ReLU can lead to the oscillation problem in optimization algorithms [106]. From the the-
oretical and practical points of view, the ReLU replaces the negative component by zero,
occurring the bias shift of the outputs and the death of some neurons, which produces the
impeding learning and vanishing gradient. In our study, we solved these issues by using
Adam optimization algorithm [76] to train BG-3DM2F architecture, which combines the
advantages of two recently popular methods; AdaGrad [31] and RMSProp [68]. Accord-
ingly, Adam is a good alternative to SGD since it can provide improved robustness to the
convergence to local minima and high memory consumption. To overcome the limitations
of ReLU, SELU [51] is proposed as an activation function that can avoid the zero gradi-
ents in the negative part, allow BG-3DM2F to be trained faster, and provide easier sparse
representations. In order to address the problem of overfitting, we used three techniques;
inserting a dropout [9] layer after FC-1 layer with a probability of 0.25, using L2 regular-
ization [58] with factor ε=0.05, and applying data augmentation methods to expand the size
of our dataset and increase the generalization ability of our model. Additionally, the hyper-
parameters setting also plays a substantial role in the final performance of the systems.
In this work, the hyper-parameters were experimentally chosen until the network began to
converge effectively. From the practical point of views [23, 28, 47, 59, 64], the best way
to alleviate the problem of semantic feature ambiguity, high inter-class visual similarities
between the classes, and vanishing gradient issue is to integrate bidirectional sequence mod-
els into multi-scale feature fusion architectures to control information flow between layers
in the network and improve the memory ability.

The computational time is one of the most essential factors of 3D-CNN. Consequently,
we have always tried to insert after each 3DMS-ChaineNet block the three-dimensional
depth-wise [97] and average down-sampling layers [78, 99]. The 3D depth-wise is a lin-
ear compression layer used to reduce the number of parameters in 3D convolutions while
the 3D average pooling layer reduces the dimension of the features with completely keep-
ing a balance between high-performance achievement and low computational times. Both
layers maintain the local perception capacity of the model with lower computational cost
[37, 65]. Moreover, the hippocampal volumes were taken as input with the smaller than
the large-scale whole brain to improve model building time and mitigate the high computa-
tional complexity. By using the hippocampal VOI as input, the average computational time
required to recognize AD is 12.852 hours and 4.565 hours for training and testing phases,
respectively.

To the best of our knowledge, there have been very few instances in which 3D-CNN has
been used for classification and prediction on volumetric neuroimaging data. The present
work is unique in the field because we have, for the first time, used an improved multi-scale
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feature fusion in 3D-CNN combined with bidirectional sequence models for the automated
recognition system of AD. Based on the results, the summary of the proposed algorithm can
be drawn as:

– This paper provides a series of comparative experiments to acquire the best perfor-
mance of BG-3DM2F since the presence of 3DMS-ChaineNet and Bi-GRFU can be
the major advantages.

– The proposed BG-3DM2F framework performs dramatically better compared to the
traditional CAD systems for AD recognition, which is capable of outperforming the
shallow 3D multi-scale feature blocks combined with GRU cells, as well as the
well-known DenseNet-121 architecture, producing strong gains in terms of accuracy,
sensitivity, and specificity.

– The proposed BG-3DM2F takes advantage of using the scaled exponential linear unit
to resolve the bias shift, Adam optimization algorithm to avoid the convergence to local
minima and high cost of memory accessibility, Bi-GRU to alleviate vanishing gradient
issue, 3D multi-scale features combined with 3D fusion to mitigate feature ambiguity
in complex visual discriminations, hippocampal volumes with the size of 28 × 28 ×
28 voxels instead of large-scale whole brains and embedding of 3D space into a low
dimensional semantic space to deal with long training time and high computational
costs.

– The proposed method can be extended to integrate other neuroimaging biomarkers and
formulate a more robust CAD system for AD recognition in its early stage.

Last but not least, this computational method based on 3D multi-scale feature fusion and Bi-
GRU cells can perform better and more effectively in recognizing AD in volumetric sMRI
modality. Besides, this method may fix and control the various gaps in the AD recognition
area, starting from VOI selection, data augmentation, and ending with the complex hip-
pocampal atrophy classification. our study is in progress. Despite these promising findings
replace previous state-of-the-art methods as described in Section 4.4, there are still some
limitations. For instance, the classification of AD against MCI is a tedious task and it needs
some improvements to investigate the factors affecting its classification performance.

6 Conclusion and future work

In this paper, the BG-3DM2F framework for AD recognition in sMRI scans is proposed. It
consists of two major sub-networks, namely 3DMS-ChaineNet and Bi-GRFU. The 3DMS-
ChaineNet model accurately learns the most significant features, while the Bi-GRFU
architecture controls 3DMS-ChaineNet information flow in a parallel way, captures contex-
tual information, alleviates the vanishing gradient problem, and preserves the information
state over long periods and in a bidirectional manner. To improve model building time, we
took the hippocampal VOI as input with a smaller size than the large-scale whole brain, and
each 3DMS-ChaineNet block was embedded into a low dimensional semantic space using
the 3D depth-wise layer and 3D average pooling without losing valuable information. To
demonstrate the effectiveness of the proposed BG-3DM2F framework, we conducted sev-
eral experiments on the ADNI dataset. The experimental results show that the proposed
BG-3DM2F generally outperforms other state-of-the-art approaches in AD recognition.

Despite the success achieved by this method for hippocampal atrophy classification,
there are still some weaknesses that make it more difficult and challenging. Recognition
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of mild cognitive impairment, which is considered as a transitional stage between normal
control and Alzheimer’s disease, is a difficult task because it is often confused with AD. In
all likelihood, these confusions occur due to similar morphological features of hippocampal
volumes in mild and severe stages. In future work, more efforts will be made to improve
these results by exploring features from other data modalities, such as PET, DTI, and
Functional Magnetic Resonance Imaging (fMRI), enhancing our BG-3DM2F with multi-
resolution analysis, and investigating other cerebral regions that impacted by Alzheimer’s
degeneration.

Acknowledgements This work is supported in part by the PPR2-2015 project with the donation of the
NVIDIA Geforce GTX 1080 Ti GPU used for this research under grant no 14UIZ2015, and in part by the Al
Khawarizmi project financed by the Moroccan government through the CNRST funding program.

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense
award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Insti-
tute of Biomedical Imaging and Bioengineering, and through generous contributions from the following:
AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica,
Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals,
Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech,
Inc.; Fujirebio; GE Healthcare; IXICO Ltd.;Janssen Alzheimer Immunotherapy Research & Development,
LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck &
Co., Inc.;Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceu-
ticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition
Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites
in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health
(www.fnih.org). The grantee organization is the Northern California Institute for Research and Education,
and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern
California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern
California.

References

1. Abdelaziz Ismael S, Mohammed A, Hefny H (2020) An enhanced deep learning approach for
brain cancer MRI images classification using residual networks. Artif Intell Med 102:101779.
https://doi.org/10.1016/j.artmed.2019.101779

2. Aderghal K, Boissenin M, Benois-Pineau J, Catheline G, Afdel K (2016) Classification of sMRI for
AD Diagnosis with Convolutional Neuronal Networks: A Pilot 2-D+ ε Study on ADNI. MultiMedia
Modeling 690–701. https://doi.org/10.1007/978-3-319-51811-4 56

3. Aderghal K, Khvostikov A, Krylov A, Benois-Pineau J, Afdel K, Catheline G (2018) Classification
of Alzheimer disease on imaging modalities with deep CNNs using cross-modal transfer learn-
ing. In: 2018 IEEE 31st international symposium on computer-based medical systems (CBMS).
https://doi.org/10.1109/cbms.2018.00067

4. Amin S, Alsulaiman M, Muhammad G, Mekhtiche M, Shamim Hossain M (2019) Deep Learning for
EEG motor imagery classification based on multi-layer CNNs feature fusion. Futur Gener Comput Syst
101:542–554. https://doi.org/10.1016/j.future.2019.06.027

5. Arifoglu D, Bouchachia A (2019) Detection of abnormal behaviour for dementia sufferers using Con-
volutional Neural Networks. Artif Intell Med 94:88–95. https://doi.org/10.1016/j.artmed.2019.01.005

6. Bakkouri I, Afdel K (2018) Multi-scale CNN based on region proposals for efficient breast abnormality
recognition. Multimed Tools Appl 78(10):12939–12960. https://doi.org/10.1007/s11042-018-6267-z

7. Bakkouri I, Afdel K (2019) Computer-aided diagnosis (CAD) system based on multi-layer feature
fusion network for skin lesion recognition in dermoscopy images. Multimed Tools Appl 79(29-
30):20483–20518. https://doi.org/10.1007/s11042-019-07988-1

8. Bakkouri I, Afdel K, Benois-Pineau J, Catheline G (2019) Recognition of alzheimer’s disease on sMRI
based on 3D multi-scale CNN features and a gated recurrent fusion unit. In: 2019 international confer-
ence on content-based multimedia indexing (CBMI). https://doi.org/10.1109/cbmi.2019.8877477

www.fnih.org
https://doi.org/10.1016/j.artmed.2019.101779
https://doi.org/10.1007/978-3-319-51811-4_56
https://doi.org/10.1109/cbms.2018.00067
https://doi.org/10.1016/j.future.2019.06.027
https://doi.org/10.1016/j.artmed.2019.01.005
https://doi.org/10.1007/s11042-018-6267-z
https://doi.org/10.1007/s11042-019-07988-1
https://doi.org/10.1109/cbmi.2019.8877477


Multimedia Tools and Applications

9. Baldi P, Sadowski P (2014) The dropout learning algorithm. Artif Intell 210:78–122.
https://doi.org/10.1016/j.artint.2014.02.004
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